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Abstract. The moment analysis method and nuclear Zipf’s law of fragment size distributions are reviewed
to study nuclear disassembly. In this report, we present a compilation of both theoretical and experimental
studies on moment analysis and Zipf law performed so far. The relationship of both methods to a possi-
ble critical behavior or phase transition of nuclear disassembly is discussed. In addition, scaled factorial
moments and intermittency are reviewed.

PACS. 05.70.Jk Critical point phenomena – 64.60.Fr Equilibrium properties near critical points, criti-
cal exponents – 25.70.Mn Projectile and target fragmentation – 25.70.Pq Multifragment emission and
correlations

1 Introduction

Hot nuclei can be formed in energetic heavy ion colli-
sions (HIC) and de-excite by different decay modes, such
as evaporation and multifragmentation. Experimentally,
multifragment emission was observed to evolve with ex-
citation energy. The multiplicity, Nimf , of intermediate
mass fragment (IMF) rises with the beam energy, reaches
a maximum, and finally falls to a lower value. The onset of
multifragmentation may indicate the coexistence of liquid
and gas phases [1]. Phenomenologically, the mass (charge)
distribution of IMF distribution can be expressed as a
power law with parameter τeff , and a minimum τmin of
τeff emerges around the onset point, which suggests that
a kind of critical behavior may take place. In the frame-
work of Fisher’s droplet model, the mass distribution can
be described by a power law with a critical exponent of
τ ∼ 2.3 when the system is in the vicinity of the critical
point [2].
On the other hand, the caloric-curve measurement can

also provide useful information on the liquid-gas phase
transition [3–7]. The analysis of other independent crit-
ical exponents provides additional indications of critical
behavior of finite nuclear systems [8–13]. In addition,
more observables have been proposed to sign the liquid-
gas phase transition or critical behavior of nuclei [14–19].
Some reviews can be found in this topical issue [20–24].
In this report, we shall review the moment analy-

sis method and Zipf law of fragment size distribution.
The phenomenological basis of moment analysis is in-
troduced in sect. 2. Finite-size effects are discussed in
sect. 3. Section 4 gives the application of moment analysis
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to multifragmention and its relation to critical behavior.
Scaled factorial moments and intermittency are discussed
in sect. 5. In sect. 6 Zipf law is introduced for the nuclear
fragment distribution and the corresponding simulations
are given; some experimental indications of nuclear Zipf
law are presented in sect. 7; finally, the summary and out-
look are given in sect. 8.

2 Phenomenological basis of moment analysis

Campi [25,26] and Bauer [27,28] et al. first suggested that
the methods used in percolation studies may be applied
to nuclear multifragmentation data. In percolation theory
the moments of the cluster distribution contain a signature
of critical behavior [29]. The method of moment analysis
has been experimentally used to search for evidence of the
critical behavior in multifragmentation. The definition of
the k moments of the cluster size distribution for each
event is

Mk =
∑

A6=Amax

AknA, (1)

where A is the fragment mass, and nA is the number of
charged fragments whose charge is Z and mass is A. The
sum runs over all masses A in the event including neutrons
except the heaviest fragment (Amax). This quantity was
taken as a basic tool in extracting critical exponents in
Au + C data [9]. It has been argued that there should be
an enhancement in the critical region of the moment Mk,
for k > τ − 1, with a critical exponent τ > 2 [25,26].
In experimental analyses, events are sorted by differ-

ent conditions. In this case, so-called conditional moments
are used to describe the fragment distribution. Usually
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the mean value of Mk(m) for events with given control
parameters, e.g. the moment Mk for events with a given
multiplicity m, or total bound charge number Zbound, or
excitation energy E∗, is called conditional moment.
More insight in the shape of the fragment size distribu-

tion is obtained by looking at a combination of moments
Mk. For example, the quantity

γ2 =
M2M0

M2
1

=
σ2

〈s〉2
+ 1, (2)

has been used, where M1 and M2 are the first and sec-
ond moments of the mass distribution and M0 is the total
multiplicity including neutrons. σ2 is the variance of the
fragment distribution and 〈s〉 = M1/M0 represents the
mean fragment size. γ2 takes the value γ2 = 2 for a pure
exponential distribution, N(s) ∼ exp(−αs) regardless of
the value of α, but γ2 À 2 for a power law distribution,
N(s) ∼ s−τ when τ > 2. In the percolation model, the po-
sition of the maximum γ2 value defines the critical point,
where the fluctuations in the fragment size distribution
are the largest. In principle, a genuine critical behavior
requires the peak value of γ2 to be larger than 2 [25,26].
However, due to finite-size effects, this is not always true
when the system size decreases, as we will see in the fol-
lowing sections.
Campi also suggested to use the single event (j) mo-

ment, i.e.

M
(j)
k =

∑

A6=Amax

Akn(j) (3)

to investigate the shape of fragment size distribution. Also
normalized moments [25]

S
(j)
k =M

(j)
k /M

(j)
1 (4)

can be defined. It was suggested to use the event-by-
event scatter-plots of the natural log of the size (Amax) or
charge number (Zmax) of the largest cluster, lnAmax or
lnZmax vs. the natural log of the second moment, lnM2,
or the normalized moment lnS2 to search for the largest
fluctuation point. Some examples will be given in the
following sections.
In the percolation model, the cluster size distribution

for infinite systems near a critical point can be expressed
by

n(s) ∼ s−τf(εsσ), (5)

where s is the size of finite clusters, τ and σ two critical
exponents and ε a variable that characterizes the state of
the system. In thermal phase transitions, ε = T −Tc is the
distance to the critical temperature Tc. In percolation, ε =
pc−p is the distance to the critical fraction of active bonds
or occupied sites pc. The scaling function f(εs

σ) satisfies
f(0) = 1, decaying rapidly (exponentially) for large values
of |ε|. In addition, theory predicts that when ε < 0 one
infinite cluster (liquid or gel) is present in the system while
no such cluster exists when ε > 0 (only droplets or n-
mers). In finite systems a similar behavior is observed,
especially when the largest cluster is counted separately.

The moment analysis method is useful to obtain some
information about the possible occurrence of a critical be-
havior. In general, critical exponents can be defined ac-
cording to the standard procedure followed in condensed-
matter physics [30]. For example,

Mk(ε) =
∑

A

= AknA(ε) ∼ |ε|
τ−k−1

σ (ε→ 0), (6)

where τ and σ are the critical exponents. For the percola-
tion phase transition and the critical point in the Fisher
droplet model, the exponent τ satisfies 2 < τ < 3 and thus
the second and high moments diverge at the critical point.
In contrast, the lower moments M0 and M1, which corre-
spond to the number of fragments and the total mass, do
not diverge.
Based upon the scaling relation eq. (5), there exists

the following relationship between critical exponents and
moments:

M0 ∼ |ε|
2−α,

M1 ∼ |ε|
β ,

M2 ∼ |ε|
−γ , (7)

where β and γ are two other critical exponents. Some re-
lationships among critical exponents exist (hyperscaling
relations), for instance

2β + γ =
τ − 1

σ
= 2− α. (8)

In finite systems transitions are smooth, but it is still
possible to determine some critical exponents, as we will
discuss in the next section. By analogy with the infinite-
system behavior, one says that these moments exhibit a
critical behavior also for finite systems. In particular, in
the Fisher model, the thermal critical point is also a crit-
ical point for moments of the fragment size distribution.
In order to illustrate the application of moment analy-

sis, we show the EOS data and NIMROD data as examples
in sect. 4.

3 Finite-size effects

Since the nucleus is a finite-size system, the macroscopic
thermal limit cannot be applied. Therefore finite-size ef-
fects on phase transition behavior should be checked. In
this section, we give some examples to illustrate this prob-
lem.
A percolation on a cubic lattice of linear size L contain-

ing L3 sites, for L = 4 to 10, where all sites are occupied
and bonds are assumed to exist between neighbouring sites
with bond probability p, has been considered [31]. Sites
that are connected together by such bonds are said to be-
long to the same cluster. It is well known that in such a
model there exists a critical (or threshold) probability pc
such that for p > pc there is a large cluster that percolates
throughout the lattice from end to end whereas for p < pc
no such cluster exists and all the sites belong to small
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Fig. 1. The logarithm of the largest fragment size Amax as a
function of the logarithm of the corresponding average normal-
ized second moment S2 for bond percolation on simple cubic
lattices of linear size ranging as L = 4–10 sites. The dots rep-
resent the actual calculation results and the curves drawn are
just to guide the eye. The number next to each curve gives the
value of the linear size L. Note that the lnS2 scale given corre-
sponds to the L = 10 curve. The other curves are successively
shifted to the left with respect to each other by a distance of
0.25. The dashed curve and the dot-dashed straight line are
explained in the text. The figure is taken from ref. [31].

clusters (including isolated sites, i.e. singlet or clusters of
size 1). As L → ∞, the transition becomes sharper and
pc approaches a limiting value which for bond percolation
on a cubic lattice is pc = 0.249 [29]. For finite systems the
threshold percolation probability is not so sharply defined.

In order to quantitatively illustrate finite-size effects
on critical behavior, the average of normalized second mo-
ment S2 (S2) over all events belonging to the same value
of ln(Amax) was calculated [31]. The results obtained by
such averaging are presented by the dots shown in fig. 1
for various cubic lattices with linear dimension L = 4–
10 sites [31]. The location of the maximum value of S2 is
now defined as corresponding to the location of the critical
point, which is a standard way of determining the perco-
lation threshold [32]. The slope of the lower branches of
the curves in fig. 1 can also be calculated. This slope is
expected to be 1 + β/γ which for percolation in three di-
mensions is equal to 1.23. For comparison the slopes of the
straight lines by a lest-squares fit to the lower branches
of the L = 4 to 10 curves are found, in ascending or-
der of L, to have the values 1.582 ± 0.036, 1.503 ± 0.029,
1.375±0.017, 1.355±0.021, 1.260±0.007, 1.258±0.014 and
1.242±0.015 [31]. This indicates that these slopes rapidly
approach the value expected in the thermodynamic limit.
In calculating these slopes one has excluded the points
near the bottom of the branch in the region where the

Fig. 2. The conditional moments M2(n) for percolation in a
cubic lattice of linear size L = 3, 5, 9 and 50 (the corresponding
cubic lattice is L3 which is shown as the number in the insert).
The figure is taken from ref. [26].

curves in fig. 1 deviate noticeably from a straight line.
These points correspond to events that are far from the
critical region.
Similarly to the analysis for the correlation of S2 and

ln(Amax), finite-size effects have been also investigated for
M2 by Campi [26]. This is shown in fig. 2, where M2(n) is
plotted for various system sizes (503, 93, 53 and 33) in a
percolation model. We see clearly the critical behavior for
the largest system, namely a well-defined peak, and how
this peak is smoothed when decreasing the size [26].

4 Application of the moment analysis method

4.1 EOS data

4.1.1 Experimental description

The reverse kinematic EOS experiment was performed
with 1 AGeV 197Au, 139La, and 84Kr beams on carbon
targets. The experiment was done with the EOS Time
Project Chamber (TPC) and multiple sampling ioniza-
tion chamber (MUSIC II). The excellent charge resolu-
tion of this detector permitted the identification of all de-
tected fragments. The fully reconstructed multifragmen-
tation events for which the total charge of the system was
taken as 79 ≤ Z ≤ 83, 54 ≤ Z ≤ 60, 33 ≤ Z ≤ 39 for
Au, La, and Kr, respectively [33–36] were analyzed. The
remnant refers to the equilibrated nucleus formed after
the emission of prompt particles. The charge and mass
of the remnant were obtained by removing for each event
the total charge of the prompt particles. The excitation
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energy of the remnant E∗ was based on an energy bal-
ance between the excited remnant and the final stage of
the fragments for each event [37]. The thermal excitation
energy E∗

th of the remnant was obtained as the difference
between E∗ and Ex which is a nonthermal component,
namely an expansion energy [33–36,38].

4.1.2 Determination of critical point and exponent in terms
of moment analysis

The determination of the critical point and the associ-
ated exponents in the multifragmentation of gold nuclei
was first attempted by the EOS Collaboration [9]. In their
early publication [9], they use the multiplicitym, as a con-
trol variable for the collision violence and assume that m
is a linear measure of the distance from the critical point.
Then the critical exponents β, γ and τ , can be determined
according to eqs. (7), (8) above. They find that these expo-
nents are close to the nominal liquid-gas universality class
values. However, this method is very delicate. In partic-
ular, due to the small size of the system, an important
rounding of the transition is expected which may distort
considerably the determined critical exponents. For a re-
view of this debate, see the arguments between Bauer [39]
and Gilkes [40].
A different analysis was also proposed by the EOS Col-

laboration [41]. In this work, thermal excitation energy has
been taken as a control variable, which is believed to be
more suitable to characterize the collision violence.
The γ2 analysis is shown in fig. 3 for all three systems.

The position of the maximum γ2 value defines the critical
excitation energy E∗

c , which corresponds to the largest
fluctuation point in the fragment size distribution. The
peak in γ2 is well defined for La and Au. For Kr, the peak
is very broad and the value γ2 is less than 2.
Figure 3 also shows a γ2 calculation using the statis-

tical multifragmentation model (SMM). The fission con-
tribution to γ2 has been removed both from the data and
SMM. In the case of Au, the γ2 value remains above two
for most of the excitation energy range both in data and
SMM. The E∗

th width over which γ2 > 2 is smaller for
La and disappears for Kr. The decrease in γ2 with de-
creasing system size is also seen in 3D percolation studies
and these differences have been attributed to finite-size
effects [41–43].
The exponent τ can be obtained if the second moment

M2 and the third moment M3 of the fragment mass dis-
tributions are known. A plot of ln(M3) vs. ln(M2) should
give a straight line with a slope given by

S =
∆ ln(M3)

∆ ln(M2)
=
τ − 4

τ − 3
. (9)

Figure 4 shows a scatter-plot of ln(M3) vs. ln(M2) for
the three systems constructed with data above the critical
excitation energy E∗

c (see fig. 3) and with SMM simula-
tions. A linear fit to ln(M3) vs. ln(M2) gives the value
of τ . The fitted τ values are 2.16 ± 0.08, 2.10 ± 0.06 and
1.88± 0.08, respectively. The former two are very close to

Fig. 3. γ2 as a function of E∗

th for all three systems of 1 AGeV
Au, La, and Kr collisions with C target and SMM calculations.
The figure is taken from ref. [33].

Fig. 4. ln(M3) vs. ln(M2) for Au, La, and Kr above the critical
energy. The figure is taken from ref. [33].
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Fig. 5. ln(Amax) vs. ln |E∗

th − E∗

C | for Au, La, and Kr below
the critical energy for exponent β determination. The figure is
taken from ref. [33].

the critical exponents τ ∼ 2.3 of the liquid-gas universal
class.
The exponent β can be obtained for the multifragmen-

tation data by the relation

Amax ∼ |ε|
β , (10)

where ε = p − pc and ε > 0. In the multifragmentation
case of this work p and pc have been replaced by E

∗
th and

E∗
c . In an infinite system, the finite cluster exists only on
the liquid side of pc. In a finite system, a largest cluster is
present on both sides of the critical point, but the above
equation holds only on the liquid side. Figure 5 shows a
plot of ln(Amax) vs. ln |E

∗
th−E

∗
c | for Au, La, and Kr. The

values of β extracted for Au and La are 0.32 ± 0.02 and
0.34 ± 0.02, respectively, which are close to the value of
0.33 predicted for a liquid-gas phase transition. On the
other hand, the value of β = 0.53 ± 0.05 for Kr is much
higher than that of Au and La.
As shown in sect. 2, Campi also suggested that the

correlation between the size of the biggest fragment Amax

and the moments in each event, i.e. the scatter-plot, can
measure the critical behavior in nuclei. Figure 6 depicts a
scatter-plot with logarithmic scale for Au, La, and Kr of
EOS data. The two branches corresponding to the sub-
critical (upper branch) and overcritical (lower branch)
events are clearly seen for Au and La. The scatter-plot
is very broad for Kr and fills most of the available space.
The sub- and over-critical branches seem to overlap and
are not well separated. Studies on SMM show a similar
behavior. If one knows the location of the critical point
from some other methods, then the scatter-plot can be

Fig. 6. Scatter-plots of ln(Amax) vs. ln(M2) from the data
for Au, La, and Kr. Left panel: EOS data; right panel: SMM
simulation. The figure is taken from ref. [33].

used to calculate the ratio of critical exponents β/γ from
the slope of the sub-critical branch. In EOS data, the posi-
tion of the largest γ2 was used to define the critical point,
which corresponds to the largest fluctuation of the frag-
ment distribution. In this context, β/γ values for Au, La
and Kr can be extracted from the linear fit to the upper
branch; they are 0.22±0.03, 0.25±0.01 and 0.50±0.01, re-
spectively. β/γ values of Au and La are close to the value
0.26 expected for the liquid-gas universality class.
To summarize the critical exponent analysis of the

EOS data, the experimental results in conjunction with
SMM provide some indications on the order of the phase
transition in Au, La and Kr. The values of the critical
exponents τ , β, and γ, which are close to the values of a
liquid-gas system, along with nearly zero latent heat (this
subject is beyond the discussion topics in this review, but
the interested reader is reported to refs. [33,34]) have been
interpreted by the authors as a continuous phase transi-
tion in Au and La. However, the analysis of Kr leads to
very different critical exponents. A recent analysis based
on the shape of SMM microcanonical caloric curve indi-
cates a first-order phase transition for the multifragmen-
tation of Kr [33,34].

4.2 NIMROD data

4.2.1 Experimental set-up and analysis details

Using the TAMU NIMROD (Neutron Ion Multidetector
for Reaction Oriented Dynamics) and beams from the
TAMU K500 super-conducting cyclotron, we have probed
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Fig. 7. Campi plots for nine intervals of excitation energy
for the QP formed in 40Ar + 58Ni. The figure is taken from
ref. [14].

the properties of excited projectile-like fragments pro-
duced in the reactions of 47MeV/nucleon 40Ar + 27Al,
48Ti and 58Ni. The charged-particle detector array of
NIMROD, which is set inside a neutron ball, includes 166
individual CsI detectors arranged in 12 rings in polar an-
gles from ∼ 3◦ to ∼ 170◦. The detailed description for
the experiment can be found in [14]. The correlation of
the charged-particle multiplicity (Mcp) and the neutron
multiplicity (Mn) was used to sort the event violence. Af-
ter the reconstruction of the quasi-projectile (QP) particle
source, the excitation energy was deduced event by event
using the energy balance equation [37].

4.2.2 Critical-point determination via moment analysis

In fig. 7 we present Campi scatter-plots for the nine se-
lected excitation energy bins. In the low excitation en-
ergy bins of E∗/A ≤ 3.7MeV/u, the upper (liquid phase)
branch is strongly dominant while at E∗/A ≥ 7.5MeV/u,
the lower Zmax (gas phase) branch is strongly dominant.
In the region of intermediate E∗/A of 4.6–6.5MeV/u, the
transition from the liquid-dominated branch to the vapor
branch occurs, indicating that the region of maximal fluc-
tuations is to be found in that range.
The excitation energy dependence of the average val-

ues of γ2 obtained in an event-by-event analysis of our
data are shown in fig. 8. γ2 reaches its maximum in the
5–6MeV excitation energy range. In contrast to observa-
tions for heavier systems of Au and La [33,41], there is no
well-defined peak in γ2 for our very light system and γ2

is relatively constant at higher excitation energies. This is
similar to the case of Kr of EOS data. We note also that
the peak value of γ2 is lower than 2 which is the expected
smallest value for critical behavior in large systems. How-
ever, 3D percolation studies indicate that finite-size effects
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Fig. 8. γ2 of the QP systems formed in Ar + Al (open cir-
cles), Ti (open triangles) and Ni (solid squares) as a function
of excitation energy.
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Fig. 9. Charge distribution of QP in different E∗/A window
for the reaction 40Ar + 58Ni. Lines represent fits. The figure is
taken from ref. [14].

can lead to a decrease of γ2 with system size [42,43]. For
a percolation system with 64 sites, peaks in γ2 under two
are observed. Therefore, the criterion γ2 > 2 alone is not
sufficient to discriminate whether or not the critical point
is reached.
In the Fisher droplet model, the critical exponent τ

can be deduced from the cluster distribution near the crit-
ical point. To quantitatively pin down the possible phase
transition point, we use a power law fit to the QP charge
distribution in the range of Z = 2–7 (fig. 9) to extract the
effective Fisher-law parameter τeff by

dN/dZ ∼ Z−τeff . (11)

Figure 10(a) shows the effective Fisher-law parameter τeff
as a function of excitation energy. A minimum with τeff ∼
2.3 is seen to occur in the E∗/A range of 5 to 6MeV/u [44].
This value is close to the critical exponent of the liquid-gas
phase transition universality class [2].
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fragment 〈Z2max〉 (e), the Zipf-law parameter λ (f). See details
in the text. The figure is taken from ref. [44].

Assuming that the heaviest cluster in each event rep-
resents the liquid phase, we have attempted to isolate the
gas phase by event-by-event removal of the heaviest clus-
ter from the charge distributions. We find that the resul-
tant distributions are better described with an exponential
form exp−λeffZ . The fitting parameter λeff was derived
and is plotted against excitation energy in fig. 10(b). A
minimum is seen in the same region where τeff shows a
minimum. To further explore this region we have inves-
tigated other proposed observables commonly related to
fluctuations and critical behavior. Figure 10(c) shows the
mean normalized second moment, 〈S2〉 as a function of
excitation energy. A peak is seen around 5.6MeV/u, it in-
dicates that the fluctuation of the fragment distribution
is the largest in this excitation energy region. Similarly,
the normalized variance in Zmax/ZQP distribution (i.e.

NVZ =
σ2

Zmax/ZQP

〈Zmax/ZQP 〉
) [45] shows a maximum in the same

excitation energy region (fig. 10(d)), which illustrates the
maximal fluctuation for the largest fragment is reached
around E∗/A = 5.6MeV. The second largest fragment
shows a behavior similar to the one of the largest frag-
ment. Figure 10(e) shows a broad peak of 〈Z2max〉 —the
average atomic number of the second largest fragment—
also occurring in the same excitation energy range around
5.6MeV/u.

More variables have been collected to support the de-
termination of the critical point around 5.6MeV/u of exci-
tation energy for our system [14], such as ∆-scaling [46] or
energy fluctuations [23]. In addition, the measurement of
the caloric curve [14] gives the temperature Tc ∼ 8.3MeV
around E∗/A = 5.6MeV. The value of the critical tem-

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

 ln
(S

3)

           E*/A 
 1.3-2.0
 2.0-2.8
 2.8-3.7
 3.7-4.6
 4.6-5.6
 5.6-6.5
 6.5-7.5
 7.5-8.4
 8.4-9.4

 Ar(+Ni)

ln(S
2
)

Fig. 11. The correlation between ln(S3) vs. ln(S2) and a lin-
ear fit.

perature is needed for the determination of the critical
exponents, as explained in the following subsection.

4.2.3 Determination of critical exponents based on moment
analysis

In terms of the scaling theory, τ can also be deduced from
eq. (9). Since the value of Tc = 8.3MeV has been deter-
mined from our caloric-curve measurements [14], we can
explore the correlation of S2 and S3 in two ranges of exci-
tation energy (see fig. 11). The moments were calculated
by excluding the species with Zmax for the “liquid” phase
but including it in the “vapor” phase. The slopes were
determined from linear fits to the “vapor” and “liquid”
regions, respectively, and then averaged. In this way, we
obtained a value of τ = 2.13± 0.1.
Other critical exponents can also be related to other

moments of the cluster distribution,Mk. Using our caloric-
curve measurements [14], we can use temperature as a con-
trol parameter for such determinations. Then the critical
exponent β can be extracted from the relation

Zmax ∝

(

1−
T

Tc

)β

, (12)

and the critical exponent γ can be extracted from the
second moment via

M2 ∝

∣

∣

∣

∣

1−
T

Tc

∣

∣

∣

∣

−γ

. (13)

In both equations, |1 − T
Tc
| is the parameter which mea-

sures the distance from the critical point.
The upper panel of fig. 12 explores the dependence of

Zmax on (1 −
T
Tc
). A dramatic change of Zmax around

the critical temperature Tc is observed. Lattice-gas model
(LGM) calculations also predict that the slope of Zmax vs.
T will change at the liquid-gas phase transition [47]. Using
the liquid side points, we can deduce the critical exponent
β by ln(Zmax) vs. ln |1−T/Tc|. Figure 12(a) shows the ex-
traction of β using eq. (12). An excellent fit was obtained
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Fig. 12. The extraction of the critical exponent β (a) and
γ (b). See text for details.

Table 1. Comparison of the critical exponents.

Exponents 3D percolation Liquid-gas NIMROD

τ 2.18 2.21 2.13± 0.10
β 0.41 0.33 0.33± 0.01
γ 1.8 1.23 1.15± 0.06
σ 0.45 0.64 0.68± 0.04

in the region away from the critical point, which indicates
a critical exponent β = 0.33±0.01. Near the critical point,
finite-size effects become stronger so that the scaling law
is violated. The extracted value of β is that expected for
a liquid-gas transition (see table 1) [29].

To extract the critical exponent γ, we take M2 on the
liquid side without Zmax. Figure 12(b) shows ln(M2) as
a function of ln(|1 − T

Tc
|). We center our fit to eq. (13)

about the center of the range of (1−T/Tc) which leads to
the linear fit and extraction of β as represented in fig. 12.
We obtain a critical exponent γ = 1.15± 0.06. This value
of γ is also close to the value expected for the liquid-gas
universality class (see table 1). It is seen that the selected
region has a good power law dependence.

Since we have the critical exponents β and γ, we can
use the scaling relation

σ =
1

β + γ
(14)

to derive the critical exponent σ. In such way, we get σ =
0.68±0.04, which is also very close to the expected critical
exponent of a liquid-gas system.
To summarize the critical exponents extracted from

NIMROD data, we present the results in table 1 as well
as the values expected for the 3D percolation and liquid-
gas universality classes. It is apparent that our values for
this light system with A ∼ 36 are closer to the values
of the liquid-gas phase transition universality class rather
than to the 3D percolation class.

5 Scaled factorial moments and intermittency

Intermittency is related to the existence of large non-
statistical fluctuations and is a signal of self-similarity of
the fluctuation distribution at all scales. This signal can
be deduced from the scaled factorial moments [48],

Fk(δ) =
Σ

Xmax/δ
i=1 〈ni(ni − 1)(ni − 2) . . . (ni − k + 1)〉

Σ
Xmax/δ
i=1 〈ni〉k

,

(15)
where Xmax is an upper characteristic value of the system
(i.e. total mass or charge, maximum transverse energy or
momentum, etc.) and k is the order of the moment. The
total interval 0–Xmax (1–Amax, Zmax in the case of mass
or charge distributions) is divided into Xmax/δ bins of
the size δ, ni is the number of particles in the i-th bin
for an event, and the ensemble average 〈〉 is performed
over all events. The concept of intermittency was orig-
inally developed in the field of fluid dynamics to study
the fluctuations occurring in turbulent flows [49,50]. Its
presence in the velocity and temperature distributions is
established by the existence of large non-statistical fluc-
tuations which exhibit scale invariance. Intermittency in
physical systems is studied by examining the scaling prop-
erties of the moments of the distributions of relevant vari-
ables over a range of scales [51]. The concept of inter-
mittency was first introduced for the study of dynamical
fluctuations in the density distribution of particles pro-
duced in high-energy collisions by Bialas and Peschan-
ski [48]. It soon led to the discovery of a characteristic
power law dependence of the factorial moments, Fk, of an
order k on the resolution scale, δ: Fk ∝ (1/δ)

f(k). The spe-
cific properties of the intermittency exponent, f(k), can be
associated either with a random production process [48,
52] or with a second-order phase transition [52–54] de-
pending on the values obtained. Thus an analysis of the
factorial moments may provide important information on
the dynamical properties of the system. Ploszajczak and
Tucholski were the first to suggest searching for intermit-
tency patterns in the mass and charge distributions of
the fragments produced in energetic collisions [55]. Since
then many studies show that an intermittency pattern of
fluctuations in the fragmentation charge distributions has
been observed in many data and models. Much effort has
been devoted to find the relation between fragmentation,
a possible critical behavior, and intermittency [45,56–60].
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Fig. 13. Experimental Campi scatter-plots from ref. [61].
Three cuts are employed to selected the upper branch (1), the
lower branch (3), and the central region (2).

Intermittency is defined by the relation

Fk(δ
′) ≡ Fk(aδ) = a−f(k)Fk(δ), (16)

between factorial moments Fk(δ
′) and Fk(δs) obtained for

two different binning parameters δ and δ′ = aδ. Intermit-
tency implies a linear relationship in the double logarith-
mic plot of lnFk vs. − ln δ.
The fractal intermittency exponent, f(k), is related to

the factorial dimension dk by

f(k) =
dk

k − 1
> 0. (17)

Different processes seem to give a different behavior of
these anomalous fractal dimension dk: 1) dk = constant
corresponds to a monofractal, second-order phase tran-
sition in the Ising model and in the Feynman-Wilson
fluid [53,54]. It has been also demonstrated that in the
case of a second-order phase transition in the Ginzburg-
Landau description one gets dk = d2(k − 1)

µ−1 with
µ = 1.304 [53]. 2) dk ∝ k corresponds to multifractal, cas-
cading processes [48]. Therefore, a study of the anomalous
fractal dimensions can give useful information about the
evolution of the system.
Several models have been introduced to study the in-

termittency signal. One of the simplest models, widely
used in the analysis of experimental data and which gives
intermittency, is the percolation model. Percolation mod-
els predict a phase transition corrected for finite-size ef-
fects and produce, at the critical point for this phase tran-
sition, a mass distribution following a power law and obey-
ing scaling properties.
An intermittency analysis has been performed on

many heavy-ion collision data as well as emulsion data.
Here we give an example of the multifragmentation data

Fig. 14. Experimental results from ref. [61]. Scaled factorial
moments ln(Fk) vs. − ln(δs) for the three cuts made in fig. 13:
left part cut 1, central part cut 2, and right part cut 3. Solid
circles represent the SFM of order k = 2, open circles k = 3,
open squares k = 4, and open triangles k = 5. The figure is
taken from ref. [61].

of Au + Au collisions at 35MeV/u which was performed at
NSCL by the Multics-Miniball Collaboration [61]. A power
law charge distribution, A−τ with τ ' 2.2 and an inter-
mittency signal has been observed for the events selected
in the region of the Campi scatter-plot where “critical”
behavior is expected. As shown in fig. 13, three cuts have
been tested. The upper branch is mostly related to the liq-
uid branch and the lower branch to the gas branch, while
the central cut (2) is expected to belong to a region where
critical behavior takes place. Actually the resultant charge
distribution of cut (2) shows a power law distribution with
τ ' 2.2 which is close to the droplet model predicted if
the liquid-gas critical point is explored. The scaled facto-
rial moments are shown in fig. 14 for the different cuts of
fig. 13. For cut 3, the logarithm of the scaled factorial mo-
ment is always negative and almost independent of − ln δ;
there is no intermittency signal. The situation is different
for cut 2 (the central part). The logarithm of the scaled
factorial moments is positive and almost linearly increas-
ing as a function of − ln δ, and an intermittency has been
observed. Cut 1 gives a zero slope, no intermittency signal
again.

It has been argued that the interpretation of this ex-
perimentally observed intermittency signal may, however,
be problematic due to an ensemble average effect [56].
Since cut 2 involves a large range of impact parameters,
the observed intermittency signal could be an artifact of
ensemble averaging, and cannot be seen as a definite evi-
dence of large fluctuation driven by a critical behavior.

Actually, several criticisms have been raised about the
role of the intermittency signal in nuclear fragmentation.
For instance, Elattari et al. showed that an intermittency
signal can be obtained even for a simple fragmentation
generator model by the random population of mass bins
with a power law distribution in which the only non-
statistical source of fluctuations is the mass conservation
law [57]. It has also been shown that the intermittency sig-
nal is washed out when events of fixed total multiplicity
are selected [45,60] or when the size of the system tends to
infinity in the percolation model in which the fluctuations
are of nontrivial origin [60]. Moreover, the intermittency
signal is not observed in the narrow excitation energy re-
gion where the phase transition occurs in the framework
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Fig. 15. Left panels: the multiplicity distribution (upper panel), the mass distribution (middle panel), the scaled factorial
moments (bottom panel) with the multiplicity restriction for 129Xe in the lattice gas model calculation. Right panel: same as
the left panel but for the events mixed with T = 5.5MeV and T = 7MeV. The figure is taken from ref. [62].

of the well-known Copenhagen statistical multifragmen-
tation model [58] or in the data of 35–110MeV/nucleon
36Ar + 197Au when the effects of impact parameter aver-
aging are reduced by some appropriate cuts [56]. However,
it is important to notice that there is no reason to expect
intermittency if the phase transition is first order.
As an example, we check the intermittency behav-

ior [62] in the lattice gas model for the disassembly of
the system 129Xe at 0.38ρ0 in the framework of LGM (for
the details of the model description, please see the follow-
ing section). At a temperature T = 5.5MeV, the mass
distribution shows a power law distribution with an effec-
tive power law parameter τ = 2.43. In a previous work
with the same model, it was shown that the liquid-gas
phase transition occurs near 5.5MeV for this system in the

LGM [63,64]. The lnFk shows slight negative values with
slightly positive slopes vs. − ln δ. However, this kind of the
positive slopes with a moment less than unity may be of
trivial origin and does not demonstrate the appearance of
intermittency which is characteristic of systems exhibiting
larger than Poisson fluctuations (i.e. the moment should
be larger than unity). In order to check the event mix-
ture effect on the scaled factorial moment, we mixed all
the events at T = 4MeV and T = 7MeV and also used
the multiplicity cuts (29 ≤ M ≤ 101) and (M < 29 or
M > 101) to see if an intermittency behavior can be found
in such mixed events. Figure 15 shows these results. Even
though all the lnFk values are positive, they are flat, i.e.
there is no intermittency signal. In these cases, the fluc-
tuation is large enough but the mass distribution shows
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no power law distribution. Hence, intermittency is absent.
However, intermittency emerges when the moments were
calculated from the mixed events of T = 5.5MeV and
T = 7MeV (fig. 15). In this case, the mass distribution
shows a quite good power law distribution and fluctua-
tions are also large enough to induce intermittency.
From the above discussions, the apparent signals of in-

termittency which emerge in many experimental data are
not easy to understand since many experimental condi-
tions bring some complexities to the pure signal of inter-
mittency, such as event mixing. More precise experimental
measurements in the future are needed to probe the inter-
mittency signal, which then may be taken as a signal of
true critical behavior.

6 Phenomenological basis of nuclear Zipf law

and model simulation

In the above sections, we have focussed on the moment
analysis, namely the behavior of the moments of the frag-
ment size distribution, or of the scaled factorial moments.
Both are related to the fluctuations of some physical ob-
servables. In this section, we would like to emphasize the
topological structure of the fragment size distribution, i.e.
how the fragments distribute from the largest to the small-
est in nuclear fragmentation. To this end, we introduce the
Zipf-type plot, i.e. rank-ordering plot, in the fragment size
distribution as well as Zipf’s law which will be illustrated
in the following [64,65].
The original Zipf’s law [66] has been used for the di-

agnosis of nuclear liquid-gas phase transition and as such
we have called it the nuclear Zipf’s law. Zipf’s law has
been known as a statistical phenomenon concerning the
relation between English words and their frequency in the
literature in the field of linguistics [66]. The law states
that, when we list the words in the order of decreasing
population, the frequency of a word is inversely propor-
tional to its rank [66]. This relation was found not only in
linguistics but also in other fields of sciences. For instance,
the law appeared in distributions of populations in cities,
distributions of income of corporations, distributions of
areas of lakes and cluster-size distribution in percolation
processes [67,68]. The details for the proposal of nuclear
Zipf’s law can been found in refs. [64,65]. In this report,
we firstly define the nuclear Zipf plot for the fragment
mass (charge) distribution and nuclear Zipf’s law in the
simulation with the help of the lattice gas model. Then
we show some experimental evidences for the nuclear Zipf
law as well as some remarks.
The tools we will use here are the isospin-dependent

lattice gas model (LGM) and molecular dynamical model
(MD). The lattice gas model was developed to describe the
liquid-gas phase transition for atomic systems by Lee and
Yang [69]. The same model has already been applied to nu-
clear physics for isospin symmetrical systems in the grand-
canonical ensemble [70] with a sampling of the canonical
ensemble [63,71–76], and also for isospin asymmetrical
nuclear matter in the mean-field approximation [77]. In

Fig. 16. Effective power law parameter, τ , second moment of
the cluster distribution, S2, and multiplicity of intermediate
mass fragments, Nimf as a function of temperature for the
disassembly of 129Xe at ρf ∼ 0.38ρ0 in I-LGM. The arrow
represents the estimated temperature of the phase transition.
The figure is taken from [65].

addition, a classical molecular dynamical model is used
to compare its results with the results of the lattice gas
model.
In the lattice gas model, A (= N + Z) nucleons with

an occupation number s which is defined s = 1 (−1) for
a proton (neutron) or s = 0 for a vacancy, are placed
on the L sites of the lattice. Nucleons in the nearest-
neighboring sites interact with an energy εsisj . The Hamil-

tonian is written as E =
∑A

i=1
P 2

i

2m −
∑

i<j εsisjsisj . A
three-dimension cubic lattice with L sites is used. The
freeze-out density of disassembling system is assumed to
be ρf =

A
Lρ0, where ρ0 is the normal nuclear density.

The disassembly of the system is to be calculated at ρf ,
beyond which nucleons are too far apart to interact. Nu-
cleons are put into lattice by Monte Carlo Metropolis sam-
pling. Once the nucleons have been placed we also ascribe
to each of them a momentum by Monte Carlo samplings
of a Maxwell-Boltzmann distribution. Once this is done,
the LGM immediately gives the cluster distribution us-
ing the rule that two nucleons are part of the same clus-
ter if P 2

r /2µ − εsisjsisj < 0. This method is similar to
the Coniglio-Klein prescription [78] in condensed-matter
physics and was shown to be valid in LGM [71,72,74,76].
In addition, to calculate clusters using MD we propagate
the particles from the initial configuration for a long time
under the influence of the chosen force. The form of the
force is chosen to compare with the results of LGM. The
system evolves with the potential. At asymptotic times the
clusters are easily recognized. Observables based on the
cluster distribution in both models can now be compared.
In the case of proton-proton interactions, the Coulomb
interaction can also be added separately and it can be
compared with the case without Coulomb effects.
In order to check the phase transition behavior in the

I-LGM, we will first show the calculations of some physical
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Fig. 17. Average charge Zn with rank n as a function of n for
129Xe ρf ∼ 0.38ρ0 in I-LGM. The histograms are the calcula-
tion results and the straight lines are their fits with Zn ∝ n−λ.
The figure is taken from [65].

observables in fig. 16, namely the effective power law pa-
rameter, τ , the second moment of the cluster distribution,
S2 [60], and the multiplicity of intermediate mass frag-
ments,Nimf , for the disassembly of

129Xe at the freeze-out
density ρf ∼ 0.38ρ0. These observables have been success-
fully employed in previous works to probe the liquid-gas
phase transition, as shown in refs. [63,65,75]. The val-
ley of τ , the peaks of Nimf and S2 are located around
T ∼ 5.5MeV which is the signature of the onset of the
phase transition. Because of the exact mapping between
the LGM and the Ising model, we know that at this point
the transition is first order.
Now we present the results for testing Zipf’s law in the

charge distribution of clusters. The law states that the re-
lation between the sizes and their ranks is described by
Zn = c/n (n = 1, 2, 3, . . .), where c is a constant and
Zn (or An) is the average charge (or mass) of rank n in
a charge (or mass) list when we arrange the clusters in
the order of decreasing size. For instance, the charge Z2

of the second largest cluster with rank n = 2 is one-half
of the charge Z1 of the largest cluster, the charge Z3 of
the third largest cluster with rank n = 3 is one-third of
the charge Z1 of the largest cluster, and so on. In the sim-
ulations of this work, we averaged the charges for each
rank in charge lists of the events: we averaged the charges
for the largest clusters in each event, averaged them for
the second largest clusters, averaged them for the third
largest clusters, and so on. From the averaged charges, we
examined the relation between the charges Zn and their

Fig. 18. Slope parameter λ of Zn to n (top) and χ2 test for
Zipf’s law (bottom) as a function of temperature for 129Xe at
ρf ∼ 0.38ρ0. The arrow represents the estimated temperature
of the phase transition. The figure is taken from [65].

ranks n. Figure 17 shows such relations of Zn and n for
Xe with different temperatures. The histogram is the sim-
ulated results and the straight lines represent the fit with
Zn ∝ n−λ in the range of 1 ≤ n ≤ 10, where λ is the slope
parameter. λ is 5.77 at T = 3MeV. Then we increased the
temperature and examined the same relation and obtained
λ = 3.65 and 1.53 at T = 4 and 5MeV, respectively. Up
to T = 5.5MeV, λ = 1.00, i.e., at this temperature the
relation is satisfied to Zipf’s law: Zn ∝ n−1. When the
temperature increases, λ decreases; for instance, λ = 0.80
at T = 6MeV and λ = 0.56 at T = 7. The temperature
at which Zipf’s law emerges is consistent with the phase
transition temperature obtained in fig. 16, illustrating that
Zipf’s law is also an additional signal to determine the lo-
cation of a phase transition. From a statistical point of
view, Zipf’s law could also be related to a critical phe-
nomenon [2,29]. The upper panel of fig. 18 summarizes
the parameter λ as a function of temperature.

In order to further illustrate that Zipf’s law is most
probably fulfilled in phase transition points, we directly
reproduce the histograms with Zipf’s law: Zn = c/n. In
this case, c is the only parameter, but what we are inter-
ested in is to check the hypothesis of Zipf’s law through
a χ2 test. The bottom panel of fig. 18 shows the χ2/ndf
for the Zn-n relations at different T . As expected, the
minimum χ2/ndf is observed around the phase transition
temperature, which further indicates that Zipf’s law of the
fragment distribution occurs around the liquid-gas phase
transition point.



Y.G. Ma: Moment analysis and Zipf law 239

1

10

E*/A = 2.8-3.7
λλλλ = 1.52

 

E*/A = 3.7-4.6
λλλλ = 1.22

1

10

<Z
n>

E*/A = 4.6-5.6
λλλλ=1.05

 

E*/A = 5.6-6.5
λλλλ    = 0.96

1 2 3 4 5

1

10

rank  n

E*/A = 6.5-7.5
λλλλ = 0.89

1 2 3 4 5

E*/A = 7.5-8.4
λλλλ    = 0.87

 

Fig. 19. Zipf plots in six different excitation energy bins for
the QP formed in 40Ar + 58Ni. The dots are data and the lines
are Zipf-law fits. The statistical error is smaller than the size
of the symbols.

7 Experimental evidences of nuclear Zipf law

7.1 NIMROD results

In sect. 4.2, we gave some information on critical behaviors
for the Texas A&M NIRMOD data based on the moment
analysis technique. Different signals of critical behavior
coherently pointing to the same excitation energy interval
have been shown. In this section, we will further show
the significance of the 5–6MeV region in NIMROD data
using a Zipf’s law analysis. In fig. 19 we present Zipf plots
for rank-ordered average Z in six different energy bins.
The lines in the figure are fits to the power law expression
〈Zn〉 ∝ n−λ. Figure 10(f) shows the fitted Zipf exponent,
λ parameter, as a function of excitation energy. As shown
in fig. 19, this rank ordering of the observation probability
of fragments of a given atomic number, from the largest
to the smallest, does indeed lead to a Zipf’s power law
parameter λ = 1 in the 5–6MeV/nucleon range. Around
this excitation energy, the mean size of the second largest
fragment is 1/2 of that of the largest fragment; that of
the third largest fragment is 1/3 of the largest fragment’s
one, etc. This is a special kind of size topology of fragment
distributions, which is very different from the equal-size
fragment distribution expected if fragments are formed
through a spinodal instability inside the phase coexistence
region [22,79–83]. This shows the relevance of using Zipf
plots to explore the fragment size topology.

7.2 CERN emulsion experiment

The nuclear Zipf-type plot has been also applied in the
analysis of CERN emulsion or plastic data of Pb + Pb or

Fig. 20. Zipf-law fit to the dependences of the mean charge of
the fragment on its rank. The different symbols represent the
multifragmentation data of different beams with an emulsion
target. Circles and solid line represent Pb beam at 158 AGeV,
squares and dashed line represent Au beam at 10.6 AGeV, star
and dotted line represent Au beam at 0.64 AGeV. Data are
taken from ref. [84].

plastic at 158 AGeV following Ma’s proposal on Zipf law,
and it was found that the nuclear Zipf law is satisfied in
coincidence with other proposed signals of phase transi-
tion [84,85].

Dabrowska et al. have extended these studies to the
multifragmentation of lead projectiles at an energy of
158 AGeV [84]. The analyzed data were obtained from
the CERN EMU13 experiment in which emulsion cham-
bers, composed of nuclear target foils and thin emulsion
plates interleaved with spacers, allow for precise measure-
ments of emission angles and charges of all projectile frag-
ments emitted from Pb-nucleus interactions. The results
on fragment multiplicities, charge distributions and an-
gular correlations are analyzed for multifragmentation of
the Pb projectile after an interaction with heavy (Pb) and
light (plastic-C5H4O2) targets. A detailed description of
the emulsion experiment can be found in ref. [84].

Figure 20 shows the Zipf-type plot for charged frag-
ments heavier than helium emitted in multifragmentation
events of Au or Pb projectile at different beam energies.
The values of λ exponents from fits 〈Zn〉 ∼ n−λ are
0.92 ± 0.03, 0.90 ± 0.02 and 0.96 ± 0.04 for beam ener-
gies of 158, 10.6 and 0.64 AGeV, respectively. Within the
statistical errors, the values of the λ coefficient are the
same in the studied energy interval (< 1–158) AGeV and
do not differ significantly from unity [84].

Dabrowska et al. also studied the dependence of the
power law exponent λ on the control parameter m, the
normalized multiplicity with respect to the total charge of
spectator particles [85]. In fig. 21(a) are shown the mean
multiplicity 〈Nf 〉 of fragments with Z ≥ 3 and the mean
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Fig. 21. (a) Mean number, 〈Nf 〉, of fragments (squares) and
mean number, 〈NIMF 〉, of intermediate mass fragments (cir-
cles) as a function of the normalized multiplicity m. Error bars
are smaller than the size of the squares and circles. (b) Power
law exponent, τ , of the charge distribution of fragments in dif-
ferent intervals of m. (c) Power law exponent, λ, in Zipf’s law
(see text) in different intervals of m. Error bars are smaller
than data points. The data is taken from ref. [85].

number 〈NIMF 〉 of the intermediate fragments. The lat-
ter are usually defined as fragments with 3 ≤ Z ≤ 30. In
fig. 21(b) the dependence of the exponent τ of the power
fits to the charge distribution of fragments, performed at
different ranges ofm, is also given. In this analysis, the fits
are restricted to fragment charges smaller than Z = 16.
At small values of m, a system has few light fragments
and the power law is steep; at large values of m there
are basically only many light fragments leading again to
a steep power law. At the moderate excitation energies
where heavier fragments appear and where we expect the
phase transition, the exponent τ has its lowest value. As
can be seen from fig. 21(b), the minimum τ occurs for m
values between 0.35 and 0.55. In fig. 21(c) the dependence
of λ obtained from the fits 〈Zn〉 ∼ n−λ, as a function
of m is depicted. The exponent λ decreases with increas-
ing m. Between m ≈ 0.3 and m ≈ 0.5 the value of λ is
close to unity and Zipf’s law is satisfied. This suggests
that at this value of m the liquid-gas phase transition
might occur. It has been checked that λ ∼ 1 occurs in the
same region of m, irrespectively of the mass of the tar-
get [85]. This means that the liquid-gas phase transition
occurs when a given amount of energy is deposited into
the nucleus and does not depend on the mass of the target.
As expected, in the case of a liquid-gas phase transition,
the previously shown maxima in frequency distributions
of multiply charged fragments (fig. 21(a)) as well as a min-
imum of the power law parameter τ (fig. 21(b)), all occur
at the same values of m, where Zipf’s law emerges.

7.3 Some remarks on Zipf law

Campi et al. pointed out that for an infinite system, Zipf’s
law is a mathematical consequence of a power law cluster
size distribution with exponent τ ' 2 [86]. More precisely,
both Zipf law exponent λ and Fisher scaling power law ex-
ponent τ are connected through the formula λ = 1/(τ−1)
in an infinite system assuming that the cluster size distri-
bution is a power law distribution. They argued that such
distributions appear at the critical point with τ ' 2 of
many theories, e.g. various theories of cluster formation
but also in the super-critical region of the lattice-gas and
realistic Lennard-Jones fluids [87]. However, the experi-
mental fragment size distribution is mostly neither power
law distribution nor exponential distribution except for
some special situations. Also, the nuclear system is always
a finite system, which means that the relationship between
λ and τ mentioned above is not strictly valid. To account
for finite-size effects, Bauer et al. [88] have evaluated the
fragment probabilities as a function of their rank at the
critical point for a finite system with fragment distribu-
tions obeying a finite-size scaling ansatz. From this ana-
lytical evaluation, where however the assumption is made
that all fragments including the largest are much smaller
than the source, they suggest to extend the simple Zipf’s
law to a more general Zipf-Mandelbrot distribution [89,
90], 〈Ar〉 = c(r+ k)−λ, where the offset k is an additional
constant that one has to introduce, and λ is asymptoti-
cally approximated as a function of the critical exponent
τ , λ = 1/(τ − 1) of the infinite system.
In any case, the Zipf-type plot is a direct observable

allowing to characterize the fragment hierarchy in nuclear
disassembly, and as such it is a useful signal of phase tran-
sition or critical behavior.

8 Summary and outlook

In summary, the moment analysis method has been in-
troduced and some applications to nuclear multifragmen-
tation have been presented. Since we are dealing with a
finite nucleus rather than infinite nuclear matter, finite-
size effects must always be discussed in the model cal-
culations and data analysis. Experimentally, the critical
behavior of nuclear disassembly can be investigated with
the help of moment analysis. The occurrence of a fluc-
tuation peak which can be extracted from the moment
analysis method can be interpreted as a signal of criti-
cal behavior. Using the same analysis method as for the
percolation model, the liquid-gas universality class expo-
nents are approximately obtained in nuclear multifrag-
mentation, such as in EOS data and NIMROD data. This
would point to the observation of the liquid-gas critical
point or second-order phase transition. However, when we
think about the system size dependence of critical expo-
nents and we consider some results using lattice gas model
simulations and other related different analysis methods,
it appears that some open questions still remain concern-
ing the order of the phase transition. For instance, EOS
Collaboration claimed that there are continuous phase
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transitions for heavier systems, namely Au and La and
first-order phase transitions for lighter systems, namely
Kr. On the other hand, NIMROD data show critical be-
havior, corresponding to a continuous phase transition,
for the light system Quasi-Ar. Different conclusions are
then reached for similar light systems. Recent systematic
analyses of caloric curves [6,14,20] and configurational en-
ergy fluctuations [23], indicate that heavier systems may
undergo a first-order phase transition while lighter sys-
tems can probably sustain a higher temperature, possibly
even above the critical point, which would make the first-
order phase transition observed in heavy nuclei become
a crossover in lighter systems. Concerning configurational
energy fluctuations, a well-pronounced peak at an excita-
tion energy around 5MeV was shown in Multics, Indra,
Isis and NIMROD data [23]. However, this fluctuation ap-
pears monotonically decreasing in EOS data [33]. Thus it
deserves further investigations.

Scaled factorial moments and intermittency have also
been reviewed and some examples given to show the ap-
parent intermittency in nuclear fragmentation. However,
some complex ingredients in experimental measurements,
such as mixtures of event multiplicities or temperature
fluctuations in the data can induce spurious intermittency-
like behavior which implies that the apparent “intermit-
tency” cannot be taken as a unique signal of the critical
behavior. Without 4π detector upgrades allowing better
data sorting, it remains difficult to take apparent “inter-
mittency” behaviors as a signal of critical behavior in nu-
clear multifragmentation.

Finally, nuclear Zipf-type plots are introduced and
Zipf’s law is proposed to be related to a phase transi-
tion or a critical behavior of nuclei. Around the transi-
tion point, the cluster mass (charge) shows inversely to
its rank, i.e. Zipf’s law appears. Even though the crite-
rion is phenomenological, it is a simple and practicable
tool to characterize the fragment hierarchy in nuclear dis-
assembly. The 4π multifragmentation data of heavy-ion
collision at Texas A&M University and the CERN emul-
sion/plastic data exhibit the Zipf law around the same ex-
citation energy deposit. The satisfaction of the Zipf law for
the cluster distributions illustrates that the clusters obey
at this point a particular rank ordering distribution very
different from the equal-size fragment distribution which
may occur due to spinodal instability inside the liquid-
gas coexistence region. To conclude, we should mention
that all these transition signals, such as the fluctuation
peak, critical exponents, Fisher scaling as well as Zipf’s
law, etc. may not be very robust individually since we are
facing a transient finite charged nuclear system. A unique
signal cannot give any definite information as to whether
the system is in a critical point or is undergoing a phase
transition. Only many coherent signals emerging together
can corroborate the observation of a phase transition or a
critical behavior in finite nuclei.
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